Last fall, I completed the third edition of my book, Kingdoms of Life Connected: A Teachers’ Guide to the Tree of Life. This came only six years after the second edition, which in turn came eight years after the first edition. “Why all this change?” you may ask.
I found that updates were needed because of changes in biologists’ view of the diversity of life. The data about how organisms are related continue to pour in, and because of this, the details of lineages and relationships change. You may be tempted to wait until the field stabilizes and stick with older ideas. Children, however, need a useful view of the diversity of life, even if it will be somewhat amended later. They cannot build on a foundation that is clearly obsolete. Specifically, it is no longer useful to present children with Five or Six Kingdoms, and those charts need to go in your history-of-science file.
I updated Kingdoms of Life Connected from cover to cover. I redid the lists of learning resources – books and websites; I purged links that no longer worked and added new ones. Publishers and authors have brought forth valuable new books in recent years, and I added titles to the lists while retaining older but useful books. I revised all the text, including the activities and lesson suggestions. I fact-checked the information to make sure it was as up to date as I could make it.
There is one especially important addition, a new lesson for introducing to the Tree of Life chart to beginning elementary children. This lesson gives older children important concepts as well, particularly if they have not yet had this overview. The introductory lesson leads children to the idea that all life shared a common ancestor and is connected. It shows them the relationships between the major branches of life. For example, they learn that the animals and fungi are sister lineages and that plants are only distantly related to fungi.
I’ll give a brief summary of some of the changes below. For more information, see the book, which is available at https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-third-edition (printed version). The ebook (pdf) is at https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-third-edition-ebook.
There are no big changes in the prokaryotes. I have kept a very basic approach because it takes extensive knowledge of biochemistry to understand the many branches of bacteria and archaea. Introductory college biology texts present a few basic lineages, and I felt that this approach would be good for children as well.
In the protists, I rearranged the Excavata lineage on the Tree of Life chart. Now, the euglenazoa and kinetoplastids are sister lineages and the metamonads are the first branch. I expect that Excavata will be split apart and redone in the future. It probably won’t be a eukaryotic supergroup, but studies continue to confirm the other supergroups – Archaeplastida, SAR, and Amorphea.
Scientific terminology evolves, and I was happy to see a complicated name go away. The branch of the stramenopiles and alveolates was previously called Chromalveolata, but that term has fallen out of favor. It originally described a lineage that included two branches I didn’t show, the cryptophytes and haptophytes; these are now placed elsewhere on the Tree of Life. The branch of the stramenopiles and alveolates may get a new name, but it seems best to leave that branch blank for now.
The fungi were the major branch that changed the most. The former Zygomycota lineage is now divided into two main lineages, the Mucoromycota and the Zoopagomycota. On my Tree of Life chart, I show the larger one, Murcoromycota. Its branches include the pin molds or Mucoromycotina (black bread mold, for example) and the arbuscular mycorrhiza fungi or Glomeromycotina (AM fungi). The AM fungi were previously placed on their own branch, but they have been added back to Mucoromycota. I didn’t add the Zoopagomycota to the Tree of Life chart, but if you have children who are interested in learning more, Fungarium by Katie Scott and Ester Gaya, is a good book for launching their explorations.
In the animal kingdom, studies have clarified some relationships in the protostome branch. You can give children the term “Spiralia” for the lineage previously called Lophotrochozoa. The whole branch is called Spiralia; “Lophotrochozoa” still refers to the mollusks and annelids. It is another of the situations where it is useful to know an older and newer term. “Lophotrochozoa” has been used for the Spiralia branch for about 20 years, and it appears in a number of websites. I recommend looking to the future and using “Spiralia” primarily. It is certainly easier to say and spell.
In the plant kingdom, studies have resolved several questions about the bryophytes. They are a single branch of life, a monophyletic lineage. The first branch was recently determined to be the hornworts. The mosses and liverworts are sister lineages. The older story was that the liverworts were the first branch because they do not have stomata. It appears that their ancestors lost their stomata rather than never having them.
The virus chapter now has suggestions for making a model of a coronavirus. I published this chapter as a stand-alone pdf in 2020. Note that if you have the third edition of Kingdoms of Life Connected, you already have the content of “What Is a Virus?”.
It is easy to become overwhelmed by all the names and branches of life. I recommend that you concentrate on the larger branches on the Tree of Life and continue to other branches as children (and you) learn about these and are interested in pursuing more. For in-depth studies at the elementary level, I recommend the digging further into the animal and plant kingdoms.
Start with the big overview of the Tree of Life. After that, my learning material, Sorting Branches on the Tree of Life: Vertebrates and Plants, is a good place to go. It is available as a pdf that you can print https://big-picture-science.myshopify.com/collections/biology/products/sorting-branches-on-the-tree-of-life-vertebrates-and-plants or as a printed material https://big-picture-science.myshopify.com/collections/biology/products/copy-of-sorting-branches-on-the-tree-of-life-vertebrates-and-plants-file-for-printing.
Enjoy your explorations of the Tree of Life!
Many times, children see plants presented as static objects rather than dynamic, interesting living things. I have a new card set that can help you bring more liveliness and fun to botany. It is called “What Flower Is Growing Here?” The set has close-up photos of buds and on a second card, the flowers that unfold from them. Children look at a bud and see if they can match it to the flower in bloom. There are 16 different species of plants featured, and their study can stimulate bud observations in both spring and fall. You can see the set here. https://big-picture-science.myshopify.com/collections/montessori-botany-materials/products/what-flower-is-growing-here .
There is a sentence or two on the flower card that helps children understand more about the flower. For more advanced children, there is a text card for each plant that gives its classification, more details of its development, and its origin.
Annuals and herbaceous perennials grow most rapidly in spring and summer. They produce their buds and blooms from spring to late summer. Most of them have finished their activities in autumn. Herbaceous plants that are pictured in the “What Flower Is Growing Here?” set include petunias, pansies, poppies, and peonies. Zinnias, hollyhocks, nasturtiums, lilies, and columbines, along with daffodils, daylilies, and the bearded iris, round out the spring and summer bloomers that die back in winter.
In autumn, there are structures to observe in another group of plants, the shrubs and trees. Several woody plants form conspicuous flower buds by autumn and hold them over the winter before they bloom in spring. All of them form leaf buds, and many form flower buds that are hidden in the leaf buds. The woody plants in “What Flower Is Growing Here?” are the rhododendron, flowering dogwood, and star magnolia. All three of these form their flower buds in the late summer or early autumn. They have flower buds that children can easily see all winter long. Other woody plants that form visible flower buds in autumn include alders (shown below), birches, forsythias, and the silktassel (Garrya).
Considering these two categories of plants, there is some flower bud to be seen almost year round. After children have worked with the “What Flower is Growing Here?” cards, they are primed to find buds on nearby plants. They can even look at weeds with a hand lens and may be able to find tiny flower buds there. Following buds through their development is an important activity that helps children see plants as alive and dynamic.
When children see the buds during the winter, they will be primed to observe the big changes that come in spring. If they keep a watch on annuals and perennials in the spring, they may spot the buds well before bloom time. It is exciting and amazing to see what a large flower emerges from some small buds.
The same sort of excitement can come in spring when the leaf buds start to open. Woody plants form their leaf buds in the previous summer or autumn, and most are covered by bud scales. Giving children an opportunity to observe next year’s leaf buds will prepare them to appreciate the swelling bud scales and leaf emergence in the spring.
Enjoy watching your plants bring forth their buds and flowers.
In the Northern Hemisphere, many schools are beginning their new year. Others around the world are in the last term for their school year. Wherever you are in your yearly cycle, please make time for fact-checking the science materials your children use in their classroom.
By fact-checking, I mean that you read the text and look at the illustrations for the learning materials that children will see. Then you confirm the information with reliable references. This sounds fairly straight-forward, but it is time-consuming, and therefore few people do it.
Fact-checking is absolutely critical because anyone can print materials, whether or not they are familiar with the subject matter. The visual impression and first information that children get from a chart will stick with them, whether it is accurate or not.
Some authors of Montessori materials are conscientious and carefully research their works. The illustrations on this page are the animal and plant kingdom charts from InPrint for Children, a company which always produces quality materials that are beautiful and accurate. Its owner and designer, Carolyn Jones-Spearman, is a perfectionist, and it shows in her work. That is why I partner with InPrint and sell those materials.
Unfortunately, some authors produce materials with errors or misconceptions because they don’t take time to learn the subject matter or because that is the way they’ve always done it. Some purchase a company and continue to provide its same materials without evaluating them. Certainly, there are commercially available materials that are not suitable as learning materials for children, either because they are outdated, or present false or misleading information.
It appears that all adults who create materials for elementary Montessori children do not have a good grasp of science subject matter. Running a business, printing materials, and marketing them are important skills for a business, and some do that well, even though they are not good at writing or researching valid content. Just because the ads look good, don’t assume that the materials are great.
I suggest that you go over all the materials you will provide to the children, whether those materials are newly printed or older ones that you have in the closet. If the volume is too great for you to cover, perhaps you can get help from older elementary children or secondary students. Children should see fact-checking as a useful activity for anyone.
First, look at the material and its illustrations. Do the illustrations give a clear picture of the subject? Are they indeed examples of the subject? I have seen charts illustrated with organisms that are not the ones being described. I have also seen superficially attractive charts that had artistic but wrong or confusing illustrations. A scientific illustration should clearly depict the features that children need to learn.
Next, read the text. Are there spelling or grammar mistakes? Does the language read smoothly, and is it concise? Most importantly, does the text convey the information clearly? The descriptions on a science chart shouldn’t be a dull list of facts, but they should not be wordy or have convoluted language either. Authors for children need to be held to the same standard of writing as a professional writing for adults. It should be our goal to provide children with examples of good writing in all their materials.
What do you do if you find less than acceptable content in a material? I strongly suggest that you write the publisher or seller of the material and give them a description of the problem. If the content needs to change, as most of biological classification has done in the last 20 years, authors need to know this. Don’t be shy in asking for a corrected version. See how the seller responds. You may wish to return the material and ask for a refund. It shouldn’t matter if you have had the material for a while. If it has serious defects, then you should be able to return it, and you may wish to warn your fellow teachers. Until teachers put pressure on the publishers of Montessori materials to get rid of their mistakes, commercially available products are not likely to improve.
That being said, if you find a simple typo, try putting a white sticker over it and correcting it yourself. The publisher would probably be grateful to have your corrections, but this is not the sort of thing that should cause you to return a material.
I certainly welcome reports of any spelling or grammar mistakes in my works. I seldom get them, however. When I went back through my Plant Lessons book before I printed it last spring, I found a number of grammar mistakes, often having to do with the placement of commas. I’m still learning and striving to improve my writing skills.
If you have specific questions about the contents of a science material, and you have not been able to find the answers on your own, you may email your questions to me. I will try to answer them, although I can’t guarantee how quickly. I'll address finding reliable sources of information in a future blog.
Priscilla
Someone has posted my Tree of Life chart on Pinterest and suggested in the caption that it could be a substitute for the Timeline of Life. NOT SO! These are two different materials with two different uses.
The Tree of Life does not show details of life through time. It shows extant animals and their lineages. People may be confused because classification has an element of time now. We group organisms by their common ancestors. You can’t show relatives without some reference to time. My cousins and I share a set of grandparents, so we have a recent common ancestor. That’s what makes us closely related.
Classification has become systematics (more on that in a later post). Biologists do not show rows of evenly spaced boxes with no connections when they diagram a kingdom or other related life. Instead, they connect the boxes (or names) with a branching diagram to show which organisms share more recent common ancestors.
The Tree of Life chart is used much like a Five Kingdoms chart was. If you are still using a Five Kingdoms, Six Kingdoms, or heaven forbid, a Two Kingdoms chart, you need to change to a different kind of chart. A Tree of Life chart is used to introduce children to the diversity of life. When I give this lesson, I tell children that this chart has a branch for all the major kinds of life on Earth. (And you may have one precocious child who asks “What about viruses?” No, they don’t belong on the organisms’ Tree of Life. They have their own.)
I can envision directing children’s attention to the big, black branches and noting that they are all connected, and they all share a common origin. I would also say that there are many, many varieties of life, and we would have a hard time studying it all at once. Instead, we put certain branches together for the purpose of focusing on them. Three of these major branches are called kingdoms because they are all the descendants of a common ancestor. They are outlined with color rectangles – yellow for fungi, red for animals, and green for land plants. The other two rectangles show organisms that we put together for the purposes of study – purple for prokaryotes and blue for protists.
The Tree of Life is used for children ages 6-9 to show them the big overview of life. They enjoy putting the cards on the solid, colored rectangles. The text on the back of the illustrations helps children place the picture of the organism. To help them find the right place, the major section and the name of the branch are in bold typeface. Older children and even secondary level students can still use the Tree of Life, and they should have an opportunity to place the cards and discuss this chart. Do they see that animals and fungi are sister kingdoms? This is why treating fungal infections is so hard.
On the other hand, the Timeline of Life shows the organisms that have lived during the time periods of the Phanerozoic Eon. A few timelines may have a bit of the previous Late Proterozoic, but the major emphasis is on life since the beginning of the Cambrian Period. There is nothing other than a timeline of life that can show this. Unfortunately the traditional Montessori Timeline of Life is riddled with mistakes – omission of the five major extinctions, all extinctions shown as ice ages, indistinct organisms, no grouping of related organisms, and my worst pet peeve, converging red lines that seem to show several lineages being fused into one.
OK, enough attacks on the Timeline of Life. It is still an important material for children, and I think it is important to use one that is updated and corrected, either by the teacher or by a company that has carefully researched its product. The Timeline of Life helps children understand how life has changed through time. (One last rant – add the Devonian explosion of plants! During that period, the land turned green as plants changed from a low green fuzz to trees that bore seeds. The Devonian – It’s not just for fishes!)
As a reminder of what is available on my website to aid you, my Outline of Geologic Time and the History of Life has lots of information that will help you make an accurate, up-to-date Timeline of Life. The Tree of Life chart is still a free download – my gift to the Montessori community. My book, Kingdoms of Life Connected, is a teacher’s guide to the tree of life. I updated it in the fall of 2016.
May you and your children enjoy exploring the living world, both its diversity and its history.
Last June, the organization that officially recognizes the discovery of chemical elements and their names announced the proposed names for the final four elements on the periodic table. This governing body, the International Union of Pure and Applied Chemistry (IUPAC), took suggestions from the discoverers of the elements and then it issued the proposal. People could submit comments about the names for several months, and then in November, the IUPAC published the names. This was the final step in making them official.
The element names and atomic numbers are: nihonium (Nh) for element 113, which is named for the country of Japan; moscovium (Mc) for element 115, named for Moscow, Russia; tennessine (Ts) for element 117, named for the state of Tennessee; and oganesson (Og) for element 118, named after a Russian scientist who helped discover several elements, Yuri Oganessian. A new periodic table with these names is available at the IUPAC website, https://iupac.org/what-we-do/periodic-table-of-elements/ .
So what does this mean for the Montessori classroom? Children are ready for the abstract idea of chemical elements when they are in their elementary years. When they get an introduction to the periodic table, it should include the full set of names. Children should get a least a brief story of how elements get their names and how governing bodies of science fields bring order to science knowledge.
Children need to know, however, that there are elements that one cannot see with one’s eyes. There are quite a number of elements that are known only by the energy, particles, and atoms produced when they undergo radioactive decay.
The image below is from my newly updated card set, Discovering the Periodic Table. It comes with two sets of cards for all 118 elements, one in color and one in black and white. The card on the left is an example of the color set, and in this case sodium's symbol is color-coded red to show it is one of the alkali metals. The other card is the back of the black and white card, and it shows the type of information given for each element - physical properties, chemical properties, and other information. The front of the black and white card is like the card on the left, but with the symbol only outlined.
I updated and expanded Discovering the Periodic Table last summer after the new names were announced. At that time I added some features to help children understand the nature of the largest elements. The elements that cannot be made in visible quantities have symbols with a dotted outline rather than a solid one. The smallest of these is astatine, atomic number 85. Scientists have calculated that if one could make a piece of astatine, it would instantly vaporize itself because of the energy released by its vigorous radioactive decay.
If you tell children this, they may wonder how such an element was ever discovered. If they don’t think of it, help them arrive at this question. We want children to think about what they hear and ask about how we know what we know. The idea to search for astatine came from its place in the periodic table. Mendeleev left a blank beneath iodine on his first periodic table, implying that there was another element in the halogen family. Researchers that first identified this element used a nuclear reactor to bombard bismuth, atomic number 83, with alpha particles. This added two more protons to bismuth nuclei, and produced a small amount of astatine, which quickly decayed. Later, when researchers knew astatine’s characteristics, and they were able to find tiny traces of it in uranium ores.
After astatine, the next element that can’t be made in visible amounts is francium, atomic number 87. The dotted outline symbols don’t show up again until atomic number 101, mendelevium. It and all larger elements cannot be made in visible amounts. Researchers have made so little of elements 104-118 that the chemical properties of these elements are also unknown. In the cards with color-coded symbols from Discovering the Periodic Table, elements 104-118 have gray symbols to show that there is not enough evidence to assign them to a chemical group such the halogens.
Your children may ask if more elements can be discovered. In theory there could be, but if someone does discover more elements, it will be bigger science news than any recent element discovery. Meanwhile, help 6-9 year-olds explore the common everyday elements with the cards set, Elements Around Us from InPrint for Children. The set, Element Knowledge, will help 9-15 year-olds learn element names, symbols, and several significant groups. This set includes the first 111 elements. You can add the names and symbols of the other seven if your children are interested. They certainly won’t see those symbols in any chemical formulas.
The second edition of my book, Kingdoms of Life Connected: A Teacher’s Guide to the Tree of Life, is available now. I wrote the first edition in 2008, and it was already time for an update this year. New information keeps coming in all fields of science. This leads to gradually evolving ideas, but change has been exceptionally rapid in the field of systematics, the study of the diversity of life.
The flood of DNA information continues, and we must bear that in mind in our presentations. It would be better to state that the story you tell is based on the evidence scientists have gathered for now. In the future, there could be adjustments. This doesn’t mean that all the information about the Tree of Life will change. Instead there will be small alterations. The potential for change certainly doesn’t excuse the presentation of obsolete classifications as anything other than history.
One of the hardest tasks for my book revision was finding up-to-date children’s books about the diversity of life. I had to leave many older, but valuable, books on the resource lists. At least it is easier to find out-of-print books now than it was a decade ago. I also found that publishers have reprinted some valuable older books. They include Peter Loewer’s Pond Water Zoo: An Introduction to Microscopic Life. Jean Jenkins illustrated this book in black and white, and it has attractive, clear drawings of many protists, bacteria, and microscopic animals, along with text that upper elementary children can read. You will have to warn your children that the classification scheme presented, the Five Kingdoms, is obsolete, but the information about the groups of organisms is still quite good.
A forty-year-old book by Alvin and Virginia Silverstein, Metamorphosis: Nature’s Magical Transformations, has been reprinted by Dover Books. It has a chapter on sea squirts that shows the tadpole-like larval stage and tells about the life cycle of these chordates. I haven’t found another children’s book that tells this story. The black and white illustrations show how old the book is, but there didn’t seem to be a good alternative.
I know the pain of having to purchase a new edition of a reference book. My favorite biology textbook cost nearly $200, and I see the new edition, just published this month, is priced at $244. Yikes, that’s hard on the budget. If you own the first edition of Kingdoms of Life Connected, you will be able to purchase the ebook version – the pdf file – of the book at a reduced price. Please email info (at) bigpicturescience (dot) biz for information about how to do this.
I’m continuing on my commentary about my botany materials and how to choose them, this time with emphasis on the older elementary child.
Children in the 9-12 year-old range have different needs than the younger elementary ones, so they are not likely to find the little booklets and three-part cards of Illustrated Botany for Children attractive. They can, however, use the wall charts (summary charts) from that material to review or to check on terminology. The file for printing the wall charts by themselves is available. See http://big-picture-science.myshopify.com/collections/montessori-botany-materials/products/illustrated-botany-for-children-wall-charts-only
If you have my book, Plant Lessons: Introducing Children to Plant Form and Function, you have a number of lesson avenues to further botany studies. If your children have had the basics, then you can go deeper into flower structure, plant adaptations, fruits, and seed structure and function.
My botany photo cards set 1, Major Branches of the Plant Kingdom, is a good way to launch studies of the diversity of plants. While I would hope that you can have many of the branches of the plant kingdom represented in classroom houseplants, you are not likely to have many reproductive structures or the rarer plants available. The photos allow children to see structures and plants that you can’t otherwise provide.
If you are basing your botany studies on flowering plant families (an excellent way to structure botany), then you have lots of interesting botany yet to cover. Even if children studied a flowering plant family each month in their three earlier years of elementary, that is only 27 families out of over a hundred that might be found in temperate North America, either as natives or imported ornamentals or as food plants. The total count of angiosperm families is 413 in the last official publication. The number of families that you may experience will depend on the continent on which you reside, and on your local climate and growing conditions. The tropics have a much greater diversity than temperate areas. If children have not studied flowering plant families before, they can dig into them at upper elementary level.
Photo card set 2, Flowering Plant Families, is an introduction to 14 flowering plant families. The photos each have text on the back to start children’s research about these lineages. The families are a sampling across the major lineages of angiosperms. The efile of my PowerPoint presentation on flowering plant families, designed first for adult botany education, is available as a download. This pdf shows 20 families, eleven of which are not in photo card set 2. The PowerPoint slides are illustrated with color photos, and the pdf is at sufficient resolution for printing. Purchasers have the right to print the slides, but only for their own classroom. The slides can serve as research starters, although the photo cards have more information, and the text is in complete sentences vs. the phrases on the slides.
Photo card set 3, 48 Flowers for Study and Sorting, can be used with many levels of students. This set has examples of a wide variety of flower features, and includes a table to help teachers pick the right cards for a variety of lessons, from simple naming of flowers to details of their structure. While younger children will likely be sorting the pictures, upper elementary and secondary students can use the accompanying text cards to learn more about the structural details and the lineages of the plants. For example, the photo that symbolizes this set is a flower of blue flax. It is a eudicot flower with distinct petals that shows radial symmetry. The text card tells that this plant is a member of the rosid lineage of eudicots, and of the fabid lineage of rosids. Its order and family are also given.
How about structuring your botany around food plants? You could combine history of the plant’s domestication, botany of its flowers, and even include to culinary uses. The practical application of farming at middle school level is another layer of this study. Knowledge of flowering plant families can help with the planning of crop rotation and fertilizer applications.
Dig in! Enjoy the unfolding miracles of the plant kingdom that go on all around you.
I’ve heard from teachers that they are not sure what to buy or how my materials fit into their lesson sequence. Here is some information that I hope helps you with those decisions for your botany studies, as well as a link to our complete range of Montessori botany materials.
Plant Lessons: Introducing Children to Plant Form and Function. This book is the anchor for your botany studies. It gives you the lessons you need to present children with the parts of plants and what those parts do. It starts with basic lessons and continues through elementary, at least. At middle school level, it is helpful for review and to fill in gaps in plant knowledge that children may have.
For early childhood – Basics lessons on the parts of a plant, kinds of roots, and the parts of a stem, leaf, flower, fruit, and seed. Other lessons on the whole plant – deciduous and evergreen, plant life cycles, growth forms, and basic reproduction (whether the plant makes spores or seeds, or reproduces vegetatively). The five basic leaf shapes, and other leaf lessons as needed.
For first level elementary (6-9 year-olds) – All the lessons are appropriate, although it is highly unlikely that all be needed in the first three years of elementary. If children have not had the basic lessons listed under early childhood, they should receive those first. Past basic lessons, the lessons can be guided by the available plant materials. Lessons such as “Woody Stems in Winter” are best when the real plant material is available. Flower lessons can be matched to the flowers that are available. It is more important to use the lessons to further children’s knowledge of real plants than to march through all the nomenclature. If you follow the development of plants on your school grounds and in the area through the year, and supplement with cut flowers, you are likely to give your children an excellent foundation in botany.
Illustrated Botany for Children is the botany nomenclature booklets and three-part cards for the children’s work in botany. The language level is simple enough that the young reader can manage it with a bit of help. There is a nomenclature booklet and accompanying cards for each of the lessons in the Plant Lessons book. The wall charts (summary charts) give a visual overview of each lesson and help children remember and review the content.
48 Flower Cards for Study and Sorting (Botany photo card set 3) is useful both to use in flower lessons and in follow-up work for the children. The table that comes with the cards tells which cards are useful for a wide range of flower lessons. For example, children can sort cards that show tepals vs. petals and sepals, or they can use the cards to practice finding stamens or pistils.
The Story of Poinsettias and The Amaryllis are children’s books for beginning elementary. These are available as files that you print. They are illustrated with color photos that show the botanical details. When these flowers are in season, the books are a great way to help children see the flowers’ important details. These books also work as a read-aloud for younger children.
Early Spring Flowers is another file that you print to make study and research starter cards. It helps children learn the names of flowers and see those challenging inconspicuous flowers on trees like maples and alders. Older children can learn more about the flowering plant family and other plant classification.
Plants We Eat is a set of six booklets and matching cards for kindergarten and beginning elementary. This material from InPrint for Children is a great way to make lessons on the parts of a plant more meaningful. The set includes a master for copying booklet for the children to color and label.
Leaf Characteristics is another set from InPrint for Children that is very useful for kindergarten and beginning elementary. It helps children learn to observe the pertinent features for leaf description and is a good foundation for more advanced leaf studies.
I'll continue with recommendations for older elementary children and middle school level another day (but you can always email me with your questions). Today I feel the need to get my hands in the soil and observe my own garden plants.
Priscilla
As we strive to reconnect children with nature, learning the names of plants can be a valuable first step. It certainly is an excellent measure to fight plant blindness, that malady that hides the marvelous details and identities of plants. All plants that children encounter are good subjects for learning names, whether the plant is a cut flower, a garden vegetable, a wildflower, or a weed.
Spring is coming extra early to the Willamette Valley, and although I realize that is not the case in most of the US, it is never too early to start thinking about spring and the opportunities for botany studies it presents. The crocuses are blooming here, as well as snowdrops and violets. When spring comes to your school, will the children know the names of the flowers that appear?
My “Study Starter Cards for Early Spring Flowers” can help your children start learning about the local flowers in the US, especially in moderate climates. This material is a print-it-yourself file that has half-page sized cards for 20 flowers and four full pages on early blooming trees. The trees are red maple, bigleaf maple, alder, and hazelnut, all of which have inconspicuous flowers. The flowers in this set include bulbs, perennials, and shrubs.
These cards have more than just the common and scientific names of the flowers. That information is enough for beginners, but elementary children are able to learn more. These and older children need names that will open doors to further learning.The cards include the family, order, and major branches of the angiosperms to which the plant belongs.
The major branches of the angiosperms are the magnoliids, the monocots, and the eudicots. The largest branch, the eudicots, has several branches including the asterids and the fabids. The names of these branches are not capitalized, nor do they carry a rank such as order or class. This is the new world of plant classification, the phylogenetic system that is currently used by botanists. With a little practice, it isn’t hard to learn or understand. My book, Kingdoms of Life Connected can help you. In case you are wondering, the former dicots included eudicots and magnoliids, which are two different lineages. "Eudicots" means "the true dicots."
The photo shows crocuses that were blooming in my garden early last March. They are at about the same stage this year at the end of January. Yes, the weather is strange, as usual. Enjoy your early spring plants, whenever they come.