News

Banishing the Kingdoms November 23 2023, 0 Comments

What is your source for current information about life sciences? Do you share your discoveries of new information with your children? A curious adult who is still learning is a very important model for children.

What’s New in the Third Edition of Kingdoms of Life Connected? January 12 2023, 1 Comment

Last fall, I completed the third edition of my book, Kingdoms of Life Connected: A Teachers’ Guide to the Tree of Life. This came only six years after the second edition, which in turn came eight years after the first edition. “Why all this change?” you may ask.

I found that updates were needed because of changes in biologists’ view of the diversity of life. The data about how organisms are related continue to pour in, and because of this, the details of lineages and relationships change. You may be tempted to wait until the field stabilizes and stick with older ideas. Children, however, need a useful view of the diversity of life, even if it will be somewhat amended later. They cannot build on a foundation that is clearly obsolete. Specifically, it is no longer useful to present children with Five or Six Kingdoms, and those charts need to go in your history-of-science file.  

I updated Kingdoms of Life Connected from cover to cover. I redid the lists of learning resources – books and websites; I purged links that no longer worked and added new ones. Publishers and authors have brought forth valuable new books in recent years, and I added titles to the lists while retaining older but useful books. I revised all the text, including the activities and lesson suggestions. I fact-checked the information to make sure it was as up to date as I could make it.

There is one especially important addition, a new lesson for introducing to the Tree of Life chart to beginning elementary children. This lesson gives older children important concepts as well, particularly if they have not yet had this overview. The introductory lesson leads children to the idea that all life shared a common ancestor and is connected. It shows them the relationships between the major branches of life. For example, they learn that the animals and fungi are sister lineages and that plants are only distantly related to fungi.

I’ll give a brief summary of some of the changes below. For more information, see the book, which is available at https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-third-edition (printed version). The ebook (pdf) is at https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-third-edition-ebook.

There are no big changes in the prokaryotes. I have kept a very basic approach because it takes extensive knowledge of biochemistry to understand the many branches of bacteria and archaea. Introductory college biology texts present a few basic lineages, and I felt that this approach would be good for children as well.  

In the protists, I rearranged the Excavata lineage on the Tree of Life chart. Now, the euglenazoa and kinetoplastids are sister lineages and the metamonads are the first branch. I expect that Excavata will be split apart and redone in the future. It probably won’t be a eukaryotic supergroup, but studies continue to confirm the other supergroups – Archaeplastida, SAR, and Amorphea.

Scientific terminology evolves, and I was happy to see a complicated name go away. The branch of the stramenopiles and alveolates was previously called Chromalveolata, but that term has fallen out of favor. It originally described a lineage that included two branches I didn’t show, the cryptophytes and haptophytes; these are now placed elsewhere on the Tree of Life. The branch of the stramenopiles and alveolates may get a new name, but it seems best to leave that branch blank for now.  

The fungi were the major branch that changed the most. The former Zygomycota lineage is now divided into two main lineages, the Mucoromycota and the Zoopagomycota. On my Tree of Life chart, I show the larger one, Murcoromycota. Its branches include the pin molds or Mucoromycotina (black bread mold, for example) and the arbuscular mycorrhiza fungi or Glomeromycotina (AM fungi). The AM fungi were previously placed on their own branch, but they have been added back to Mucoromycota. I didn’t add the Zoopagomycota to the Tree of Life chart, but if you have children who are interested in learning more, Fungarium by Katie Scott and Ester Gaya, is a good book for launching their explorations.

In the animal kingdom, studies have clarified some relationships in the protostome branch. You can give children the term “Spiralia” for the lineage previously called Lophotrochozoa. The whole branch is called Spiralia; “Lophotrochozoa” still refers to the mollusks and annelids. It is another of the situations where it is useful to know an older and newer term. “Lophotrochozoa” has been used for the Spiralia branch for about 20 years, and it appears in a number of websites. I recommend looking to the future and using “Spiralia” primarily. It is certainly easier to say and spell.

In the plant kingdom, studies have resolved several questions about the bryophytes. They are a single branch of life, a monophyletic lineage. The first branch was recently determined to be the hornworts. The mosses and liverworts are sister lineages. The older story was that the liverworts were the first branch because they do not have stomata. It appears that their ancestors lost their stomata rather than never having them.

The virus chapter now has suggestions for making a model of a coronavirus. I published this chapter as a stand-alone pdf in 2020. Note that if you have the third edition of Kingdoms of Life Connected, you already have the content of “What Is a Virus?”.

It is easy to become overwhelmed by all the names and branches of life. I recommend that you concentrate on the larger branches on the Tree of Life and continue to other branches as children (and you) learn about these and are interested in pursuing more. For in-depth studies at the elementary level, I recommend the digging further into the animal and plant kingdoms.

Start with the big overview of the Tree of Life. After that, my learning material, Sorting Branches on the Tree of Life: Vertebrates and Plants, is a good place to go. It is available as a pdf that you can print https://big-picture-science.myshopify.com/collections/biology/products/sorting-branches-on-the-tree-of-life-vertebrates-and-plants or as a printed material https://big-picture-science.myshopify.com/collections/biology/products/copy-of-sorting-branches-on-the-tree-of-life-vertebrates-and-plants-file-for-printing.  

Enjoy your explorations of the Tree of Life!  


Spring cleaning in your biology closet March 04 2020, 0 Comments

It’s that time of year when the urge to put things in order can strike. You may have a closet with a lot of biology materials that you want to evaluate. Here are my suggestions for things to throw out. You may not want to discard the whole material just because it has flawed content provided it is feasible to fix the problems.

In the animal kingdom materials, if you find anything that has the phylum Coelenterata, please remove that name or cover it. Biologists haven’t used it for more than 30 years. That phylum was split into two others when biologists discovered that it held two unrelated groups. The two lineages are called phylum Cnidaria (anemones, corals, and jellyfish) and phylum Ctenophora (comb jellies). It is likely that you can cover over “Coelenterata” and add the label “Cnidaria.” Just make sure that you don’t have comb jellies in with your cnidarians.

Another no-no for the animal kingdom is showing protozoa along with the animals. This goes back to the two-kingdom idea of classification, and biologists and biology textbooks haven’t grouped protozoans with animals in more than 40 years.

If you find a chart that is labeled “Non-Chordates,” change the title to “Invertebrates.” Maybe “non-Chordate” was useful in the past, but biologists use “invertebrate” far more often. I searched books on Amazon.com using “non-chordates,” and I got six titles, all published outside the US. I searched “invertebrates,” and got over 6000 titles. A non-chordate chart isn’t likely to show current information, so it is time to recycle it or at least recycle the images and add new text.

The relationships between the phyla of animals solidified about 15 years ago. In biology, classification has morphed into systematics, which all about relationships and shared common ancestry. The details of this would take several blogs so I will simply say that the arthropods are related to the nematodes, and the mollusks are related to the annelids. Arthropods were once grouped with annelids, but that is no longer considered valid. Can you add something to your animal kingdom chart that shows which phyla are closely related? See my book, Kingdoms of Life Connected, for help if your animal kingdom chart needs a redo. https://big-picture-science.myshopify.com/collections/frontpage/products/kingdoms-of-life-connected-second-edition.  It is also available as an ebook (pdf).

Dig back into the cobwebs in the botany section of your closet. If your chart of the plant has club mosses separated from the fern clade – whisk ferns, horsetails, and ferns – you have a good representation of life’s diversity. The chart from InPrint for Children is a good example. https://big-picture-science.myshopify.com/collections/montessori-botany-materials/products/plant-kingdom-chart . Another mark of a current material – it should use the term “eudicots” instead of “dicots.”  If your chart has phylum names, it is quite possible that many of the names are obsolete. Many botanists no longer use phyla or division names. Instead, they use lineage names, and sometimes a common name is all you need. I have a graduate level botany textbook that uses no phylum/division names. 

If your plant kingdom chart has fungi or bacteria on it, the time has come to do some serious pruning. Those two have to go to their own charts. If the image of a fungus appears on a plant kingdom chart, that’s what children will remember even if you say that it doesn’t belong there. The fungus kingdom is a sister to the animal kingdom. In nature, fungi and plants are partners, but on classification charts, they shouldn’t hang around together.

If you have a Five Kingdoms chart, file it under the history of biology. It should NOT be the first thing children see as they study the diversity of life. The Tree of Life is the place to start.

How about your timeline of life? This is a difficult material to do well, and there are many bad attempts out there. Does your timeline show several red lines coming together (converging)? That’s the traditional style, but lineages do not converge (fuse together); they diverge (split apart). Maybe you could salvage the images and redo the timeline without the misleading lines. Check the dates for the fossils because there are several in the wrong place on the older timelines.

Does your timeline of life have photos of extant animals or plants in prehistoric times? This gives a very wrong impression. I’ve seen a timeline that had “First marsupial” and a picture of a kangaroo. This is just like saying “First eutherian (placental) mammal” and showing a picture of a horse. Both the kangaroo and the horse evolved within the last few million years. They are both adapted to live on grasslands and open shrub lands, where resources are spread out, and there is little cover from predators. Therefore both are good at moving quickly over long distances. Neither one of them belongs in the Mesozoic Era on a timeline of life. Mesozoic mammals were much smaller and less specialized.

Does your timeline have the five major extinctions? And does it have ice ages in the right places? The older charts used ice to symbolize all extinctions, although that wasn’t the cause in most of them. The five major extinctions come at the end of the Ordovician, Devonian, Permian, Triassic, and Cretaceous Periods. They are such important shapers of life that they are essential to a good timeline.

If all this correcting sounds like too much to do, remember that you are doing it for the children. They need current information and a foundation that they can use in their future studies. There is no point in giving them science “information” that they will never see outside a Montessori classroom.


An imaginary look at the animal kingdom nesting boxes January 14 2020, 2 Comments

In my last post, I took readers on an imaginary tour of nesting boxes for the plant kingdom. These materials are traditionally called Chinese boxes, but I prefer to use “nesting boxes.” Children explore the structure and major lineages of a kingdom of life with this material. Nesting boxes work well for showing the lineages of the animal kingdom provided the content reflects current knowledge.

Here’s an imaginary tour of nesting boxes for the animal kingdom as it is defined today. I believe firmly that we should be giving children terms that they will see in their further studies, not terms that are historical and that do not appear in modern textbooks.

To start our tour, picture a large red box labeled “Animal Kingdom.” We remove the lid, and inside there is a small box that is labeled “Phylum Porifera, the sponges.” This group was once called the Parazoa, but this term has fallen out of favor, and I recommend these animals be called the sponges. Once thought to be several separate lineages, they are now placed on one lineage, Porifera (“the pore-bearers”).

Along with the little Porifera box, there is a much larger box that takes up most of the animal kingdom box. It is labeled “Eumetazoa, the true animals.” We lift the lid, and inside there are two small boxes labeled “Phylum Ctenophora, the comb jellies” and “Phylum Cnidaria, the stingers.” A large box labeled “Bilateria” takes up most of the remaining space, and it holds the animals with bilateral symmetry.

Cnidarians include the sea anemones, corals, and jellyfish. The comb jellies include sea gooseberries and sea walnuts. These two phyla were previously placed in a single phylum. That phylum, Coelenterata, is obsolete and should not appear in current animal kingdom classification studies. Our small red boxes are labeled “Phylum Cnidaria, the stingers,” and “Phylum Ctenophora, the comb-bearers,” and “Coelenterata” is not here at all.

The big box labeled “Bilateria, animals with bilateral symmetry” contains two boxes, which are labeled Protostomes (“mouth first”) and Deuterostomes (“mouth second”). These names reflect a difference in the development of the fertilized egg in these two lineages. The deuterostome box takes up about 1/3 of the space. We look inside it, and we find two boxes, one labeled “Phylum Echinodermata, the spiny skins,” and the other “Phylum Chordata, the corded ones.” The echinoderm box has the sea urchins, sea stars, and sea cucumbers inside. The chordate box has its three subphyla inside, the lancelets, the tunicates, and the vertebrates. Note that chordates are not the same as vertebrates! I’ve seen them mistakenly equated in Montessori materials. (If you find the term “non-chordate” in your materials, it would be best to change it to “invertebrate.”)

The protostome box has two boxes inside, one labeled “Spiralia” or “Lophotrochozoa” and one labeled “Ecdysozoa.” The Spiralia box has the rotifers, the flatworms, the mollusks, and the annelids (segmented worms). This box also has the name Lophotrochozoa although some biologists use this cumbersome term for only a part of the Spiralia. The term Spiralia could change so check again in a few years to see the current story. The Spiralia are named for the pattern of cells in the early embryos of most species.

“Lophotrochozoa” is still used for the Spiralia lineage in many college textbooks, but this could to change by the time elementary children reach college age. I have adopted “Spiralia” because of biologists’ support for it, and it is easier to spell and say. My book, Kingdoms of Life Connected, still has “Lophotrochozoa” because when I reprinted it last year, the term “Spiralia” was not yet shown in Wikipedia (usually a good source for the latest phylogeny). I hope biologists have settled on the name by the time I print the book again.

The ecdysozoa are the molting animals. They shed their whole outer covering at once. This is the most successful animal lineage in terms of numbers of species and numbers of individuals. The Phylum Arthropoda, the jointed feet, and the Phylum Nematoda, the roundworms, are the two main phyla in this box. Tardigrades and velvet worms could also go here if space allows and if you want to get that level of detail.

If any of your animal kingdom materials include “protozoa,” please remove them and study them with the eukaryotic supergroups (protists). They do not belong in the animal kingdom. If your nesting boxes for animals have protozoa, the best time to change this was about 40 years ago. The second best time is now.

I’ve presented a basic look at the animal kingdom here. If you would like further information on the animal kingdom or the lineages I gave in this article, please see my book, Kingdoms of Life Connected. https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-second-edition (printed) and https://big-picture-science.myshopify.com/collections/biology/products/kingdoms-of-life-connected-ebook-1 (pdf).

If you want to evaluate an animal kingdom chart, look for the groupings I gave for the nesting boxes. The nematodes should be grouped with the arthropods. The echinoderms should be grouped with the chordates. This is because biologists group organisms according to their shared ancestors, not just how they look. The chart from InPrint for Children places related phyla next to each other. See https://big-picture-science.myshopify.com/collections/biology/products/animal-kingdom-chart.

My photo card set for the animal kingdom - https://big-picture-science.myshopify.com/collections/biology/products/zoology-photo-cards-set-1-major-phyla-of-the-animal-kingdom – gives you high quality images of representative animals across the kingdom. They could be used in or alongside a nesting box material.

Happy explorations of the animal kingdom,

Priscilla

 

PS. I am putting my reply here to two comments below. I'm sorry I don't have pictures of this imaginary material for you, Gail. I, too, am a visual learner. I think Cindy's idea of referring to the animal kingdom diagram from my Tree of Life chart might help. Yes, the lids on the boxes would be like a node on the evolutionary tree (phylogeny). The reason that there isn't a box for the Radiata is that they don't seem to share a common ancestor other than the one for all animals. If they did share a more recent ancestor, they might still be in Coelenterata. They have a similar organization, although the ctenophores are described as biradially symmetrical. They have a combination of radial and bilateral symmetry. The cnidarians are genuinely radially symmetrical. These two phyla came from separate experiments by early animal life. This is different than the the two phyla shown in the Ecdysozoa. They shared a common ancestor - at least there evidence for this in their genomes. 

Thank you for sending your questions and comments. Please feel free to ask further questions.  


Octopuses and other animals April 14 2015, 0 Comments

There’s a great new book out called Octopuses! Strange and Wonderful. It is by Laurence Pringle and is illustrated by Meryl Henderson. Together they present an attractive, accurate, and informative book about octopuses and other mollusks as well. The book would be an engaging read-aloud for younger elementary children and a good research material for upper elementary. I liked the information about how mollusks’ bodies are structured and how they work. Obviously this author researches his subjects carefully, and he knows how to tell a good story as well.

When I looked on Laurence Pringle’s website, I discovered that he has produced many highly rated children’s science books. The Strange and Wonderful series includes books on scorpions, cicadas, alligators and crocodiles, snakes, bats, and sharks. I was familiar with another high quality book by this author, A Dragon in the Sky: The Story of a Green Darner Dragonfly, published in 2001. I’m not sure how I missed the Strange and Wonderful series, but I will certainly seek it out now.

Another volume I have acquired lately is Animal Earth: The Amazing Diversity of Living Creatures by Ross Piper. It has many uses, from providing gorgeous illustrations of all sorts of animals to giving detailed biology for secondary student research. When I say all sorts of animals, I mean that the book covers all of the 34 phyla currently recognized in the animal kingdom. There is a chapter on animal lineages that helps one understand the current arrangement of those phyla on evolutionary trees (cladograms). The book is structured to follow the cladogram in the contents page. After the first branches of animals, the section on bilaterial animals starts with deuterostomes, and so the chordates, including us, are near the front of the book. Then it covers the protostomes, starting with the molting animals, including arthropods and nematodes. The clade called lophotrochozoa comes next, with annelids, mollusks, flatworms, and rotifers. The order alone will stimulate thought.

I found What on Earth?: 100 of Our Planet’s Most Amazing New Species while I was browsing in a bookstore. I highly recommend spending some time going through the stacks at bookstores, particularly those with a science section. I find things there that I missed on Amazon. This little book by Quentin Wheeler and Sara Pennak will likely stimulate conversations and research about a wide range of life. The 100 species are primarily animals, but fungi, plants, and a few protists also appear. There are even two bacteria. A feast for curiosity indeed.